Pro Inp	posed Algorithm <i>ut:</i>
•	Metagenomic reads (fragments) from next-gen sequencing technology
•	Training database (TDB) – consists of G labeled
	genomes, previously acquired
•	Unsupervised clustering algorithm
	(e.g. ARI, K-means)
•	(e.g. K in K-means and v in ART)
Alge	orithm:
A.	Train Naïve Bayes Classifier (NBC) motifs, M of G genome probability profiles Do: $i = 1,, G$ Do: $j = 1,, 4^N$ (# of diff. motif perm.)
	$P(M_j genome_i) = \frac{Tree, of M_j in genome_i}{Total M in genome_i} $ (1)
	End
B.	Score fragments, evaluate fragment, f using NBC
	Do: $f = 1,, F$ (# of fragments)
	1. Identify $J(N-1)$ overlapping motifs
	each of length N in fragment, f :
	2. Calculate probability of fragment
	belonging to <i>genome</i> _i in TDB:
	$Score, S_{f,i} = P(f genome_i) = \prod^{J} P(M_i genome_i) (2)$
	j=1
C.	Build feature matrix for unsupervised classifier
	NBC Scores Features
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{1}{5}$ Frag2 S2,1 S2,2
	O .
D.	Call unsupervised clustering algorithm
	Cluster each fragment using corresponding
	feature vector of dimension G
Out	put:
•	Fragments clustered by taxonomic class
Test	(e.g. Phyla, Genus, Strain, etc.) t: Figures of Merit
•	Accuracy to group similar classes together
	$A_{unity} = \frac{1}{T} \sum_{p}^{P} \left[argmax(f_{c_p} p) \right] $ (3)
•	$F = \begin{bmatrix} f_{c_p} \end{bmatrix}$ Accuracy of algorithm to isolate dissimilar classes
	$c \left[argmax(f'_t c) \right] $
	$A_{isolate} = \sum_{c=1}^{Le} \frac{J_c}{F} \begin{bmatrix} -I_r \\ -I_c \end{bmatrix} = \frac{1}{F} \sum_{c=1}^{Le} \begin{bmatrix} argmax(f_t^r c) \\ f_t^r \end{bmatrix} $ (4)
	C: # of clusters
	P: # of taxonomic classes (e.g. phyla)
	J_c : # of Jrag. in cluster, c f_{cn} :# of frag. in cluster, c belonging to taxonomic class.
	f_t : # of fragments from taxonomic class, p