
 *This work was supported in
part by National Science
Foundation award #0845827.

[13] Jacob a Russell, Corrie S Moreau, Benjamin Goldman-Huertas, Mikiko
Fujiwara, David J Lohman, and Naomi E Pierce, “Bacterial gut symbionts
are tightly linked with the evolution of herbivory in ants.,” Proceedings
of the National Academy of Sciences of the United States of America, vol.
106, no. 50, pp. 21236–41, Dec. 2009.

[14] D. W. Goodall, “Objective methods for the classification of vegetation.
III. An essay in the use of factor analysis,” Austral. J. Bot., vol. 1, pp.
39–63, 1954.

[15] R. A. Digby, P. G. N., and Kempton, Population and Community Biology
Series: Multivariate Analysis of Ecological Communities., Chapman and
Hall, London, 1987.

[16] M.O. Hill and HG Gauch, “Detrended Correspondence Analysis: An
imporved ordination technique,” Plant Ecology, vol. 42, no. 1, pp. 47–58,
1980.

[17] N. R. Pace, “A Molecular View of Microbial Diversity and the Biosphere,”
Science, vol. 276, no. 5313, pp. 734–740, May 1997.

[18] Zongzhi Liu, Todd Z DeSantis, Gary L Andersen, and Rob Knight, “Accu-
rate taxonomy assignments from 16S rRNA sequences produced by highly
parallel pyrosequencers.,” Nucleic acids research, vol. 36, no. 18, pp.
e120, 2008.

[19] B L Maidak, G J Olsen, N Larsen, R Overbeek, M J McCaughey, and
C R Woese, “The RDP (Ribosomal Database Project).,” Nucleic acids
research, vol. 25, no. 1, pp. 109–11, Jan. 1997.

[20] James Kennedy and Russell Eberhart, “Particle Swarm Optmization,”
Neural Networks, vol. 4, pp. 1942–1948, Jan. 1995.

[21] C. L. Mohler, “Effect of sampling pattern on estimation of species dis-
tributions along gradients,” Vegetatio, vol. 54, no. 2, pp. 97–102, Oct.
1983.

[22] Justin Kuczynski, Zongzhi Liu, Catherine Lozupone, D. McDonald, Noah
Fierer, and Rob Knight, “Microbial community resemblance methods dif-
fer in their ability to detect biologically relevant patterns,” Nature Meth-
ods, vol. 7, no. 10, 2010.

[23] A. Wald and J. Wolfowitz, “On a test whether two samples are from the
same population,” The Annals of Mathematical Statistics, vol. 11, no. 2,
pp. 147–162, 1940.

[24] M.P. Austin, “On non-linear species response models in ordination,” Plant
Ecology, vol. 33, no. 1, pp. 33–41, 1976.

Hybrid PSO Algorithm Pseudocode

Input:
· Data matrix of species abundance:

[(# of Species) x (# of Samples)]
· Fitness test: Wald-Wolfowitz

· m: # of particles for PSO

· k: # of iterations

· Free-parameters: {w,c1,c2}
Initialization:
1. Input seed, xs: random permutation of integers 1:n

2. Compute initial particle velocities, v0
i :

a. Choose # of IM{} for each particle’s initial velocity:

· Drawn from: U [n/4, n/2]
b. Select the node and displacement for each move:

· Node from U [1, n]
· Displacement from: U [−n/3, n/3]

3. Compute initial particle positions:

x0
i = xs + v0

i , i = 1:m

4. Set each particle best to initial:

pi = x0
i

5. Run fitness test on all x0
i

6. Set global best position:

g = x0
i s.t. max

x0
i

(fitness)

Iteration:
For iter = 1:k
For particlei = 1:m
A. Compute velocities: vk+1

i :

1. wvk
i

Compute r1, r2, then:
2. c1r1(pi − xk

i) distance of current to particles best

3. c2r2(g− xk
i) distance of current to global best

B. Add velocities sequentially to xk
i :

xk+1
i = xk

i + vk+1
i

C. Compute fitness of each xk+1
i :

if fit(xk+1
i) > pi, then pi = xk+1

i
if fit(xk+1

i) > g, then g = xk+1
i

D. Perform Local Enhancement on g using SOP-3 Exchange

E. Update g
End

End

Definitions:
· xs: position (permutation) seed for all particles

· xk
i : position for particle i at iter k

· vk
i : velocity for particle i at iter k

· pi: best position (permutation) for particle i

· g: best position (permutation) of all particles

· r1, r2: random values from U[0,1]

· Free parameters:

w: current particle
c1: particle best

c2: global best

1

Fig. 1. Pseudocode of the proposed hybrid PSO algorithm

Environmental gradients affect the presence/absence (i.e. abundance) and
distribution of species in the environment.
 This is evident by observing that species prefer particular

 environmental conditions.
 Think about humans and our sensitivity to temperature.

Typical species (e.g. bacteria) response curves to an environmental gradient.

Environmental Gradient: Spatially varying environmental condition such as
pH, salinity, moisture, temperature etc.

Species samples are collected at various sites in the environment (e.g. soil,
water, etc.). The abundance of each species obtained at each site is recorded in a
community data matrix. Measurements of known environmental gradients may
also be obtained at each site, each gradient mapped to a vector.

Without a priori knowledge of an underlying gradient nor the ideal
conditions under which the sampled species thrive, can we order the
sample sites such that the ordering corresponds to the increase/decrease
of the gradient?

A community ecologist has two sets of tools at their disposal for analyzing
species/sample site relationships:

 Direct Gradient Analysis (Constrained): Gradients have been
 measured. The scoring of sample sites is constrained to be linear
 combinations of the measured gradients.
 Methods include: CCA, RDA

 Indirect Gradient Analysis (Unconstrained): The gradients are
 unknown a priori. The sample sites are positioned by an ordering, such that
 samples that are maximally dissimilar are placed maximally apart in a
 resulting sequence or plot .
 Methods include: PCA, CA (DCA), PCoA, NMDS

Ordination: Represent species/site relationships in low-dimensional space for
visualization and interpretation.

Aim of study:
Hypothetical Example: Ordering land/water samples according to
unknown environmental gradient (gradient hypothesized to be salinity)

X marks sample site: bacteria abundance data
obtained via 16s rRNA/pyrosequencing

The spatial ordering of samples are:
PA, Del River, NJW, NJE, Bay, LBI, Atlantic

We wish to order these samples by the
underlying gradient, which should be causing
the species abundances to vary.

Expected output (if salinity is the gradient):
PA, NJW, NJE, LBI, Del River, Bay, Atlantic

Empirical Example: Bacteria have been sampled along a pH gradient.
Can we recover the sample order w. r. t. increase/decreasing gradient?
180m Hoosfield Acid Strip, UK

X marks sample site: bacteria abundance data obtained via 16s rRNA/
pyrosequencing

A typical approach to the problem: PCA Analysis

X1 X2 X3 X4 X5 … … … X20 X21 X22

4.1 pH 8.3

The output of analysis should produce samples ordered 1 to 22 or 22 to 1

Controlled site so that pH is the only gradient of major influence

X X X X XX X

Novel Approach to the Problem:

Challenges of the Problem:

Performance: Proposed Algorithm

1.  Standardize community data matrix (subtract mean, divide by std. dev.)
2.  Compute symmetric correlation matrix [#_sites x #_sites]
3.  Find orthogonal vectors of maximum variance (Eigen-analysis)
4.  Keep two eigenvectors corresponding with the two largest eigenvalues
5.  Plot PCA1 vs. PCA2:

Considerations:
1.  Arch Effect: Characteristic curve is an artifact of the method

 - obscures interpretation of PCA2
2.  Cannot resolve or detect multiple gradients due to arch effect
3.  Effectively, most gradient influence is compacted in PCA1 (highest variance) so we

cannot say that PCA1 is the gradient.
4.  Assumes that the species are monotonically related to one another and the

gradients.

² What do the gradients look like?
 Current methods cannot recover them.

² What is the true distribution of species w. r. t. each environmental condition?
 Arguments over the unimodal model.

² Determining number of gradients
 Current methods cannot resolve multiple gradients

²  Issues dealing with sampling artifacts.
 Recovering rare species and correct abundance in samples

²  Plus, Issues with Species/Species Interactions and Nonlinearities

Performance: Random Chance

Iterations Fitness
20	

 111	

50 149
100 140
200 212
300 201
500 203

Iterations Fitness Best Fitness Mean
5000 121 10
10000 122 10

Sample 1	

 Sample 2	

 …	

 Sample N	

Species 1	

 4	

 7	

 …	

 0	

Species 2	

 0	

 1	

 …	

 16	

…	

 …	

 …	

 …	

 …	

Species M	

 4	

 5	

 …	

 1	

Particle Swarm Optimization

Inspired by the behavior of insects in a population.

We model each insect as a particle representing one
solution to our optimization problem.

The collection of particles, referred to as the
swarm, exist in the solution space.

Each particle has a position and a velocity. With
each iteration of the PSO algorithm, a particle
moves in the solution space based on its
performance on the fitness function and that of the
entire swarm.

The benefit of this behavior is that in many cases
the optimization avoids local minima.

Optimization terminates once maximum number of
iterations reached or a particle’s fitness score
passes predetermined threshold.

4.1	

4.3	

…	

8.35	

M >> N For the pH dataset there are 22! (~1021) possible solutions to the problem

Fitness Function
Given a permutation of samples x, test the null
hypothesis that the abundance of each species is
randomly distributed across the samples.

Wald-Wolfowitz Runs Test, w(x)

Null hypothesis (1) affirmative or (2) rejected for
most species:

 (1) Infer samples are incorrectly ordered
 (2) Infer samples are correctly ordered

in which, {xi �Z : (1,n)} and xi �= xj ∀ i �= j.

Each one of these samples contain the abundance of each
species found at the sample site,

spi = {spi1, spi2, ..., spim}, i= 1 : n.

Since we are sampling the bacteria present at each sample, and
there is incredible diversity within the bacterial community, we
generally have m>> n, so we form a ’wide’ m x n data matrix
which will be input to our algorithm.

In order to determine if our environmental samples are cor-
rectly ordered, we rely on biological assumptions of the bac-
terial responses to the underlying gradient. It is assumed that
this gradient is affecting the populations of bacteria [7]. Partic-
ularly, we assume that each type of bacteria prefers a particular
environmental condition [21]. As this condition varies spatially
across the gradient, so will the abundance of each respective
bacteria. For example, biologist use a unimodel distribution to
model the abundance of bacteria across a pH gradient [22]. In
this particular study, there is an immense amount of diversity
between bacteria, having preferences ranging from pH values
of 4 to 8 [9].

To assess the feasibility of a permutation of ordered samples
to reflect the true ordering we separately observe the distribu-
tions of all species. To this end we have chosen the Wald-
Wolfowitz runs test, wi(x) [23]. For a given permutation, we
test the null hypothesis that the abundance of each species is
randomly distributed across the samples. When the null hy-
pothesis cannot be rejected for most species we infer that the
samples are incorrectly ordered. However, when the null hy-
pothesis is rejected for many species we infer that the samples
are correctly ordered. This is in accordance with the biologists’
selection of the gaussian model of species along a gradient [21].
Even in cases where there is dispute among biologists inter-
changing the gaussian model for other distributions [24], our
model is still effective since we are testing for randomness ver-
sus any distribution.

Formally, we set up our objective/fitness function as follows,

y =
�M

i=1wi(x), {y �Z : (0,m)} and {wi �Z : (0,1)}

in which our goal is to chose the permutation such that,

xcorrect =max
x

(y).

B. Algorithm Implementation

PSO algorithms were inspired by the behavior of insects in a
population [20]. We model each insect as a particle represent-
ing one solution to our optimization problem. The collection of
particles, referred to as the swarm, exist in the solution space.
Each particle has a position and a velocity. With each iteration
of the PSO algorithm, a particle moves in the solution space
based on its performance on the objective/fitness function and
that of the entire swarm. The benefit of this behavior is that
in many cases the optimization avoids local minima. The op-
timization terminates once the maximum number of iterations

has been reached or the score of the fitness function passes a
predetermined threshold.

The traditional formulation of a PSO algorithm begins with
velocity, (please refer to Figure 1 for notation definitions)

vk+1
i = wvki + c1r1(pi − xki)+ c2r2(g− xki)

and position,

xk+1
i = xki + vk+1

i .

Since the particles are each a permutation of unique integers,
the velocities are defined as insertion moves, IM. Each IM(i,d),
moves the value i in the particle by a displacement, d, either left
or right. Each of the three components of the velocity are com-
puted separately and added sequentially to the current particle
position in equation. Greater detail on this procedure may be
found in the references [5].

Our full implementation of the hybrid PSO algorithm is de-
scribed by pseudocode in figure 2. With the input of our data
matrix we also choose the number of particles to evaluate on
each iteration and the number of iterations to complete. The
velocity, or rather the IM for each particle is created by sam-
pling from uniform distributions. The respective velocities are
added to a randomized seed vector containing the integers from
1 to the number of samples, thereby rearranging the seed per-
mutation for each particle’s initial position so that each one is
unique. The best respective particle position, pi, is set to the
initialized position. The fitness test is run on each particle and
the one performing the best is stored in the global best position
vector, g.

Once all of the particles are initialized the algorithm com-
putes the velocity for the next iteration. The velocity for each
particle is comprised of three components. The first component,
weighted by the free-parameter, w, contributes the respective
particle’s previous velocity to the current iteration. The sec-
ond component, weighted by the free-parameter, c1, contributes
the difference between the particle’s best and current positions.
The third component, weighted by the free parameter, c2, con-
tributes the difference between the swarm’s best and the respec-
tive particle’s current position. Each velocity is added sequen-
tially to the particle’s position and the fitness test is run. The
particle’s best position, pi, is updated if the fitness test score ex-
ceeds those previous. Likewise, the swarm’s best position, g, is
updated when the fitness test score of any particle exceeds the
global best.

Before we continue to the next iteration we perform a local
enhancement search on the global best position using the SOP
3-Exchange algorithm [6]. Essentially, this algorithm swaps
groups of samples with one another moving iteratively through
the sample first in the forward direction, starting with index 1,
and then in the backward direction, starting with index n. After
each swap the fitness is run on the current permutation and the
exchange algorithm terminates once the fitness has increased
due to a swap. The global best position is updated and the PSO
algorithm continues again with the next iteration. More detail
on this procedure is provided in Figure 2.

In addition to the PSO algorithm described above, we have

in which, {xi �Z : (1,n)} and xi �= xj ∀ i �= j.

Each one of these samples contain the abundance of each
species found at the sample site,

spi = {spi1, spi2, ..., spim}, i= 1 : n.

Since we are sampling the bacteria present at each sample, and
there is incredible diversity within the bacterial community, we
generally have m>> n, so we form a ’wide’ m x n data matrix
which will be input to our algorithm.

In order to determine if our environmental samples are cor-
rectly ordered, we rely on biological assumptions of the bac-
terial responses to the underlying gradient. It is assumed that
this gradient is affecting the populations of bacteria [7]. Partic-
ularly, we assume that each type of bacteria prefers a particular
environmental condition [21]. As this condition varies spatially
across the gradient, so will the abundance of each respective
bacteria. For example, biologist use a unimodel distribution to
model the abundance of bacteria across a pH gradient [22]. In
this particular study, there is an immense amount of diversity
between bacteria, having preferences ranging from pH values
of 4 to 8 [9].

To assess the feasibility of a permutation of ordered samples
to reflect the true ordering we separately observe the distribu-
tions of all species. To this end we have chosen the Wald-
Wolfowitz runs test, wi(x) [23]. For a given permutation, we
test the null hypothesis that the abundance of each species is
randomly distributed across the samples. When the null hy-
pothesis cannot be rejected for most species we infer that the
samples are incorrectly ordered. However, when the null hy-
pothesis is rejected for many species we infer that the samples
are correctly ordered. This is in accordance with the biologists’
selection of the gaussian model of species along a gradient [21].
Even in cases where there is dispute among biologists inter-
changing the gaussian model for other distributions [24], our
model is still effective since we are testing for randomness ver-
sus any distribution.

Formally, we set up our objective/fitness function as follows,

y =
�M

i=1wi(x), {y �Z : (0,m)} and {wi �Z : (0,1)}

in which our goal is to chose the permutation such that,

xcorrect =max
x

(y).

B. Algorithm Implementation

PSO algorithms were inspired by the behavior of insects in a
population [20]. We model each insect as a particle represent-
ing one solution to our optimization problem. The collection of
particles, referred to as the swarm, exist in the solution space.
Each particle has a position and a velocity. With each iteration
of the PSO algorithm, a particle moves in the solution space
based on its performance on the objective/fitness function and
that of the entire swarm. The benefit of this behavior is that
in many cases the optimization avoids local minima. The op-
timization terminates once the maximum number of iterations

has been reached or the score of the fitness function passes a
predetermined threshold.

The traditional formulation of a PSO algorithm begins with
velocity, (please refer to Figure 1 for notation definitions)

vk+1
i = wvki + c1r1(pi − xki)+ c2r2(g− xki)

and position,

xk+1
i = xki + vk+1

i .

Since the particles are each a permutation of unique integers,
the velocities are defined as insertion moves, IM. Each IM(i,d),
moves the value i in the particle by a displacement, d, either left
or right. Each of the three components of the velocity are com-
puted separately and added sequentially to the current particle
position in equation. Greater detail on this procedure may be
found in the references [5].

Our full implementation of the hybrid PSO algorithm is de-
scribed by pseudocode in figure 2. With the input of our data
matrix we also choose the number of particles to evaluate on
each iteration and the number of iterations to complete. The
velocity, or rather the IM for each particle is created by sam-
pling from uniform distributions. The respective velocities are
added to a randomized seed vector containing the integers from
1 to the number of samples, thereby rearranging the seed per-
mutation for each particle’s initial position so that each one is
unique. The best respective particle position, pi, is set to the
initialized position. The fitness test is run on each particle and
the one performing the best is stored in the global best position
vector, g.

Once all of the particles are initialized the algorithm com-
putes the velocity for the next iteration. The velocity for each
particle is comprised of three components. The first component,
weighted by the free-parameter, w, contributes the respective
particle’s previous velocity to the current iteration. The sec-
ond component, weighted by the free-parameter, c1, contributes
the difference between the particle’s best and current positions.
The third component, weighted by the free parameter, c2, con-
tributes the difference between the swarm’s best and the respec-
tive particle’s current position. Each velocity is added sequen-
tially to the particle’s position and the fitness test is run. The
particle’s best position, pi, is updated if the fitness test score ex-
ceeds those previous. Likewise, the swarm’s best position, g, is
updated when the fitness test score of any particle exceeds the
global best.

Before we continue to the next iteration we perform a local
enhancement search on the global best position using the SOP
3-Exchange algorithm [6]. Essentially, this algorithm swaps
groups of samples with one another moving iteratively through
the sample first in the forward direction, starting with index 1,
and then in the backward direction, starting with index n. After
each swap the fitness is run on the current permutation and the
exchange algorithm terminates once the fitness has increased
due to a swap. The global best position is updated and the PSO
algorithm continues again with the next iteration. More detail
on this procedure is provided in Figure 2.

In addition to the PSO algorithm described above, we have

Fitness Goal
338

Increasing Salinity

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

2

4

6

8

10

12

14

16

18

20

22PCA on pH Dataset - Samples colored by true pH (blue: low)

*typical result PCA 1

P
C

A
 2

Sa
m

pl
e

ID

pH =

