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Comparison of Statistical Methods to Classify
Environmental Genomic Fragments

Gail L. Rosen�, Member, IEEE, and Steven D. Essinger, Student Member, IEEE

Abstract—“Binning” (or taxonomic classification) of DNA
sequence reads is an initial step to analyzing an environmental
biological sample. Currently, a homology-based tool, BLAST, is
one of the most commonly used tools to label DNA reads, but it is
argued that BLAST will quickly lose its classification ability as the
genome databases grow. In this paper, we compare the accuracies
of a naïve Bayes classifier (NBC) and statistical language model to
BLAST for binning reads and demonstrate that NBC obtains good
performance for the low cost of computational complexity. On
the other hand, the back-off n-gram language model can improve
accuracy when only partial training data is available (such as
in-progress sequencing projects). NBC demonstrates comparable
performance to BLAST and can also be optimized on partial
training datasets by adjusting the word feature size. A fivefold
cross validation is conducted to compare each method’s accuracy
for determining novel genomes at different taxonomic levels,
with NBC outperforming BLAST for species-level classification
but BLAST outperforming NBC for genus-level and phyla-level
classification. In conclusion, the NBC is a competitive taxonomic
classifier, and language models can improve performance when
only partial training data is available.

Index Terms—Bayesian classification, DNA, language models,
metagenomics.

I. ENVIRONMENTAL DNA CLASSIFICATION

O UR ABILITY to sequence and study whole microbial
genomes is impaired because most microbes (over 99%)

cannot be cultured in isolation [1]. High-throughput approaches,
or metagenomic methods, propose to sequence the DNA that is
present in a sample en-masse without the need for prior cul-
tivation using next-generation sequencing technology. But this
technology processes and fragments all DNA in a sample in-
discriminately, and therefore the fragments need to be labeled
as particular taxa, organisms or higher level families of organ-
isms, efficiently and accurately. A graphical illustration com-
paring traditional genomics to the problem of metagenomics is
shown in Fig. 1.

Traditionally, sequence classification methods align two se-
quences (usually homologous genes) to compare their similarity

Manuscript received March 25, 2010; accepted September 20, 2010. Date
of publication September 27, 2010; date of current version February 02, 2011.
This work in this paper is supported in part by a National Science Foundation
CAREER award #0845827 and a Department of Energy award DE-SC0004335.
Asterisk indicates corresponding author.

*G. L. Rosen is with the Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA, 19104 USA (e-mail: gailr@ece.drexel.edu;
sde22@drexel.edu).

S. D. Essinger with the Department of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA, 19104 USA (e-mail: gailr@ece.drexel.edu;
sde22@drexel.edu).

Digital Object Identifier 10.1109/TNB.2010.2081375

Fig. 1. (a) In classical genomics, one type of bacteria is usually cultured then
its DNA is isolated, sequenced, and assembled. (b) In metagenomics, each frag-
ment can be from a different organism, therefore assembly is not viable, and
methods are needed to decipher the origins of the fragments.

and are based on dynamic programming techniques, with the
most popular tool being BLAST [2]. Relying on homology is
feasible, but homology-based methods’ ability to assign short-
reads to strains in the database yields many ambiguous results,
and it has been recently reported that BLAST breaks down when
going from long 600–900 bp reads to short-reads for metage-
nomics data [3]. It is also hypothesized that as the database of
organisms grows, the complexity of the search will grow which
will also disadvantage BLAST. Therefore, we seek a framework
that represents the entire DNA in a sample without prior knowl-
edge of the genes, promoters, etc. in the DNA sequences.

This field of analyzing complex mixtures from environmental
samples is coined metagenomics. The increased complexity of
the data from various environments poses challenges in assem-
bling, annotating, and classifying genomic fragments from mul-
tiple organisms. Complications also stem from the difficulty
of assembling, annotating, and classifying the short sequence
fragments typically obtained with next-generation sequencing
methods. So, novel computational methods are needed to ad-
dress these issues and the massive amounts of sequence data that
have become available through recent technological advances.

Currently, the most widely used tool for DNA string search
is BLAST (Basic Local Alignment Search Tool), an approach
based on dynamic programming [2]. Yet, it has been shown
that the closest BLAST hit is often not the nearest taxonomic
neighbor [11] and without questioning the results, most metage-
nomic analysis relies on BLAST [6], [16], [34], [35]. Only re-
cently researchers have begun to analyze and compare the per-
formance of BLAST for metagenomic datasets [3], [18]. Simply
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TABLE I
METHODS FOR TAXONOMIC CLASSIFICATION

classifying genomic fragments based on a best BLAST hit will
yield reliable results only if close relatives are available for com-
parison. While recently published MEGAN software relies on
BLAST for analysis, it attempts to address this problem by clas-
sifying DNA fragments based on a lowest common ancestor al-
gorithm (LCA) [6]. LCA allows fragments to generalize to a
higher branch in the tree and not the nearest neighbor. Mavro-
matis et al. [19] show that homology-based approaches have
lower specificity and hence are not very accurate. But, it has
been shown that utilizing all the random sequence reads (RSRs)
in a sample has comparable performance and can be faster and
cheaper than extracting 16S rRNA genes alone [18]. Therefore,
the naïve Bayes classifier and language models offer an inter-
esting alternative to BLAST for processing mass amounts of
randomly fragmented segments.

Signal processing and machine learning disciplines are well-
equipped to solve problems where background noise, clutter,
and jamming signals are commonplace. Hidden Markov models
(HMMs), originally popularized for speech processing, have
been used for over a decade for gene recognition [4], and it has
been found that many techniques used in speech and text mining
can now be applied to biology. Metagenomics allows the clas-
sification of millions of organisms and their genes, including
identifying particular community differences and markers. Su-
pervised and unsupervised machine learning methods, language
models, linear classifiers, advanced Bayesian techniques, etc.
are all promising to advance rapid annotation and comparison
of samples. In this paper, we compare a Bayes classifier and
statistical language model, which are able to identify significant
features and classify sequences in a blind and high-throughput
manner.

II. SUPERVISED TAXONOMIC CLASSIFICATION

Supervised classification methods have traditionally been
more popular, since unsupervised methods rely on intrinsic,
possibly false, assumptions of the data. The disadvantage of su-
pervised methods is the lack of sufficient data for training. Only
a fraction of the species diversity exists in the current databases,
and estimating diversity has been seen as unknowable as it is
in constant change [5], making supervised approaches difficult
to apply. However, as our knowledge of genomes expands,
supervised methods hold promise to learn the data that will
become available.

In this section, we review several methods in Table I.
1) Homology-Based Approaches: Many current approaches

align sequenced fragments to known genomes using homology
[3], [6], [11]–[16]. DNA is fragmented during sequencing so
that the sequencer can “read” (or call the bases of) a relatively
short length of DNA. Usually, the shorter the fragment, the

shorter the time it takes to sequence, thereby driving next-gen-
eration technology. Short-reads are generally not unique, thus
yielding ambiguous classifications, and this has cast doubt
about their applicability to metagenomics [3], [11], [15]. There-
fore, when classifying sequences, an important aspect is to
assess methods for these short-reads.

When the Venter Institute first shotgun-sequenced fragments
from the Sargasso Sea, the natural first step was to BLAST
these sequences against the comprehensive Genbank database
[12], [17]. However, the closest BLAST hit is often not the
nearest neighbor [11]. Yet, without questioning the results, most
metagenomic analysis relies on BLAST [6], [13], [16]. Only re-
cently researchers have begun to analyze and compare the per-
formance of BLAST for metagenomic datasets [3], [18]. Simply
classifying genomic fragments based on a best BLAST hit will
yield reliable results only if close relatives are available for com-
parison. While recently published MEGAN software relies on
BLAST for analysis, it attempts to address this problem by clas-
sifying DNA fragments based on a lowest common ancestor al-
gorithm (LCA) [6]. LCA allows fragments to generalize to a
higher branch in the tree and not the nearest neighbor. Mavro-
matis et al. [19] show that homology-based approaches have
lower specificity and hence are not very accurate. But, it has
been shown that BLASTing all random sequence reads (RSRs)
in a sample has comparable performance and can be faster and
cheaper than extracting 16S sequences alone [18].

A notably relevant analysis demonstrates the drawbacks of
using BLAST to identify short-reads from next-generation tech-
nology. For most metagenomics datasets to date, the significant
BLAST hits only account for 35% of the sample [3]. Wom-
mack et al. [3] take long-read metagenomic samples and ran-
domly chooses a shorter read within the larger one. The perfor-
mance of BLAST nucleotide annotation is compared to BLAST
for protein function classification using Clusters of Orthologous
Genes (COGs). Short-reads retrieve up to 11% of the sample
with correct BLAST hits and significance. They find that short-
reads tend to miss distantly related sequences and miss a sig-
nificant amount of homologs found with long-reads. Therefore,
improving short-read (less than 400 bp) taxonomic and func-
tional classification are open problems.

2) Composition-Based Approaches: Besides homology,
there are many sequence-composition based approaches
[7]–[10], [20]–[28]. Compositional approaches use features of
length- motifs, or -mers, and usually build models based
on the motif frequencies of occurrence. Intrinsic compositional
structure has been instrumental in gene recognition through
Markov models [4] and in tandem repeat detection [29], [30]. In
[20]–[22], [24]–[28], evolutionary and classification methods
are based on di-, tri-, and tetra-nucleotide compositions, which
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soon lead researchers to look at longer oligos for genomic
signatures [23]. Wang et al. [8] use a naïve Bayes classifier with
8 mers ( -mers of length 8) for 16S recognition. Researchers
have since investigated ranges of different oligo-sized frequen-
cies, with the initial pioneering work and the first naïve Bayes
implementation by Sandberg et al. [7]. McHardy et al. [10]
found that 5 mer and 6 mer signatures worked the best for sup-
port vector machine (SVM) classification, but they concluded
that accurate classification only occurs for read-lengths that
are 1000 bp. Sandberg et al. were able to obtain over 85%
genome-accuracy performance for 400 bp fragments using 9
mers on a dataset of 28 species. Rosen et al. [9] took this further
to show that the method can achieve 88% for 500 bp fragments,
but more impressively, it can achieve 76% for strain-accuracy
for 25 bp fragments.

Wang et al. [8] shows reasonable classification of 16S rRNA
sequences while Rosen et al.’s [9] technique can use any
fragment including reasonable performance on short-sequence
reads. Because Manichanh et al. [18] shows RSR-based classi-
fication is advantageous to 16S, Rosen et al.’s approach has its
advantages, especially since the approach achieves 76% accu-
racy for ALL 25 bp reads at the strain-level. Wang et al. verifies
that with 16S rRNA sequences, one can get 83.2% accuracy
(200 bp fragments) and 51.5% (50 bp) on the genus-level via
a leave-one-out cross validation (CV) test set. For comparison,
Rosen et al.’s naïve Bayes classifier (NBC) achieves 95%
accuracy for 100 bp and 90% accuracy for 25 bp fragments on
the species level.

The 1000+ completely sequenced microbial genomes, as of
March 2010, are still an incomplete representation of extant
diversity, as the microbial sequencing projects grow exponen-
tially. Metagenomic data will produce a significant set of se-
quences that cannot be assigned to any known taxon, and the
question arises how to estimate the number of unknown species.
For example, Huson et al. show that anywhere between 10% and
90% of all reads may fail to produce any hits [6].

III. CLASSICAL BAYESIAN CLASSIFICATION AND

LANGUAGE MODELING

A naïve Bayes classifier (NBC) applies Bayes theorem for
classification and is based on the assumption that each feature,
in this case words, in the classification is independent of each
other. This assumption has the advantage of greatly simplifying
maximum likelihood estimation of unknown genome-condi-
tional word occurrence probabilities. However, in statistical
language models, these estimates are usually modified by appli-
cation of a heuristic parameter-smoothing technique, that uses
lower order word-lengths to avoid (overfitted) null estimates
of words occurrences. It is hypothesized that such estimates
will improve performance, and we show that it does in the
case of higher level taxa recognition using partial training data.
But we also show that a simple Bayesian classifier based on
naïve assumptions is a competitive classifier for recognizing
novel genomes of known taxa. We compare NBC and back-off
n-gram language modeling with the current method used in
bioinformatics, BLAST (Basic Local Alignment Search Tool).

A. Naïve Bayes Classification

The NBC algorithm has been shown to perform well in
complex situations, despite its strong independence assumption
[31]. In this case, our features are composed of DNA words
( -mers). -mers are DNA base sequences of length that
may or may not be overlapping, but are overlapping for our
classifier. The classifier that is used maximizes the likelihood
that a particular fragment comes from a specific genome and is
defined as follows:

(1)

where is the fragment made up of : mers,
, with each th -mer con-

sisting of nucleotide base history .
is the th genome, and is the number of words in the

-length fragment.
For small , all possible -mers are expected to exist. But as
gets large, the average word occurrence frequency decreases,

and some words are unseen, or have null estimates, termed nul-
lomers. The nullomers in the NBC case are given a low value,
arbitrarily chosen as 3.8 10 instead of 0; this was calcu-
lated by taking 1 over the longest genome size. This ensures
that when the log computations are performed, that a log prob-
ability of does not skew the summation, and that a final
unique score can be given. The NBC assumptions are rudimen-
tary; therefore, it is hypothesized that a more intelligent estima-
tion of null estimates will improve performance. We aim to esti-
mate word occurrences with a back-off n-gram language model
in the next section.

B. Back-Off Modeling

Back-off n-gram language modeling (shortened to “back-off
modeling” for the rest of the paper) does not assume indepen-
dence and is based on a conditional probability model. In the
back-off model [32], the conditional probability of a series of
nucleotide bases, , given history h, , is estimated ac-
cording to the precedent bases in

(2)

where .
-mers can be estimated according to the recursive context

where is a normalizing constant to constrain the area of
the probability distribution function to 1, is the

frequency occurrence of the th -mer, and is the
smoothed probability model. This model assumes that the
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frequency occurrences will be used if they exist, otherwise
lower order -mers will approximate the probability of an
unseen -mer.

NBC does not take into account the disparities in probability
mass of different -mer occurrences, especially those -mers
that do occur to those that do not occur. Therefore, Good–Turing
[33] frequency estimator compensates for probability distribu-
tion inconsistencies and in effect smooths them to get a better
estimate. The derivation will not be explained here, but essen-
tially, a coefficient, based on the previous bases, is multiplied to
the conditional probability estimator to discount the probability
mass smoothly

(3)

The coefficient, , is determined based on the history of the
-mer.

IV. DATASET

A total of 635 distinct microbial strains, downloaded in 2008,
were used. The standard hierarchy of the taxonomy used in this
paper is Phyla Order Family Genus Species
Strains. The 635 microbes belong to 470 distinct species and
260 distinct genera in this dataset. While 66 species contain
more than one strain, 89 genera contain more than one strain.
This shows that some knowledge will be lacking when it
comes to species- and genus- class diversity. The microbial
strains genome lengths range from 160 Kbp (base pairs) for
Candidatus Carsonella to 13 Mbp for Sorangium Cellulosum.

V. RESULTS

Although all the microbial strains that were acquired for
training are listed as “completed” in Genbank [36], it is of
interest to test the performance of classifiers using partial
knowledge. There are many microbial projects only partially
completed and listed as microbial “genomes-in-progress” in
Genbank. In fact, as of this writing, there are approximately
2 uncompleted microbial genomes for every completed one.
Another interesting aspect is that only around 1000 microbes
are completely sequenced out of millions in the environment.
So we seek to answer the question: Using a subset of microbial
genomes for training, is it possible to predict taxonomies of
novel genomes?

In this section, we show the comparison of NBC, using full
and partial training datasets. The performance of NBC versus
the back-off models are shown for partial training data for 635
genomes. Finally, we show how the classifiers perform for iden-
tifying various taxonomic levels of novel strains, via cross vali-
dation analysis.

A. Comparison of Partial Training Sizes on NBC Performance

To show the effect of training data size on the NBC perfor-
mance, we test the classifier on three different training data sce-
narios (shown in Fig. 2): 1) full training-data, 2) 5 Mbp per
genome (100 50 Kbp fragments), and 3) 1 Mbp per genome
(100 10 Kbp fragments). The test fragments were chosen to

Fig. 2. A comparison of varying partial training data sizes on NBC accuracy
(%) versus taxonomic level. For each of the 635 microbes, the full genomes,
100� 50 Kbp random fragments (5 Mbp of each genome), and 100 � 10 Kbp
random fragments (1 Mbp of each genome) were trained on. The same 100 �
500 bp fragments per genome were used for each test. This demonstrates that
the less training data available for organisms, the lower the accuracy for lower
taxonomic levels, but upper levels will still be able to resolve with fairly high
accuracy.

be 500 bp long (which is approximately the modal read length
from current pyrosequencer technology) [37]. For each genome,
100 test fragments were scored and averaged, totaling 63 500.
Because some genomes are shorter than 5 Mbp or 1 Mbp, these
genomes are oversampled for these scenarios. This is a com-
prehensive study of what performance can be expected when
all testing genomes come from the training set but only partial
genomes are available for training.

The results in Fig. 2 show that when the full training-data
is used, the 15 mers perform the best, with little improvement
over 12 mers. Significant performance is lost for 9 mers in the
full-training data case. 3%–15% (phyla/strains) accuracy is lost
when only using 5 Mbp per genome as opposed to the full
genome in the training. In this case, it is interesting to note
that 12 mers significantly outperform 15 mers. Finally, for the
1 Mbp partial training data, over 40% accuracy is lost as com-
pared to the full training data case for strains (which shows that
strain genotype signatures are less likely to be captured). But
for phyla-recognition, only 15% accuracy is lost, showing that
higher level taxa signatures can still be characterized with less
training data and 9 mers/12 mers perform significantly better
with less training data than 15 mers.

B. NBC Versus Back-Off Using Partial Training Data for the
635 Microbial Genomes

In order to compare NBC to back-off models, the partial-
training set of 1 Mbp per genome (100 10 Kbp fragments)
and test set of 100 500 bp fragments per genome were used.
As noted before, NBC does not perform optimally with 15 mers
with this training database. In Table II, the accuracy of 9 mers
versus 15 mers for both NBC and back-off models are com-
pared. As shown in Fig. 2, NBC’s performance degrades with
15 mers. The interesting aspect here is that the back-off model
improves performance for genus level and higher. In fact, the
back-off models for 9 mers perform better than the 12 mer-NBC
for the levels of Order (NBC 12 mers: 75.6% versus back-off
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TABLE II
THE TAXONOMIC CLASSIFICATION OF 100 500 bp FRAGMENTS COMING

FROM 635 GENOMES. ALL 635 GENOMES THAT WERE TESTED WERE

ALSO TRAINED ON BUT WITH ONLY 100 � 10 Kbp (1 Mbp) PARTIAL DATA.
IF SOME AMBIGUOUS HITS FOR BLAST ARE INCORRECT, THE MATCH IS

MARKED AS INCORRECT. THIS TABLE DEMONSTRATES THAT BACK-OFF

MODELING CAN IMPROVE PERFORMANCE FOR RECOGNITION OF GENOMES

THAT WERE ONLY PARTIALLY TRAINED ON (e.g. INCOMPLETE GENOMES),
AND THAT NBC OUTPERFORMANCES BLAST BY 5–10%

TABLE III
SPECIES AND GENUS FIVEFOLD CROSS VALIDATION USING THE FULL GENOME

TRAINING DATA. NBC PERFORMS BETTER THAN BLAST BY 1% FOR

THE FINE RESOLUTION OF SPECIES WHILE BLAST
OUTPERFORMS NBC BY 5% FOR GENERA

9 mers: 76%) and Phyla (NBC 12 mers: 85.6% versus back-off
9 mers: 87.1%). It is hypothesized that the back-off models help
smooth out some of the missing information.

C. Cross Validation Analysis for Taxonomic Classification

In this section, we wish to answer the question that if we
have a partially populated database representing a finite set of
taxa, with what accuracy can novel strains be classified into var-
ious taxonomic-“resolutions”? The full genomes were used in
the training data, and again 500 bp fragments were used for
testing. Yet for this time, datasets that have sufficient represen-
tations of various taxonomic levels are carefully selected, and
“test strains” are left out each trial and evaluated to see how well
they are classified into the sufficiently represented taxonomies.
The results are compared to BLAST that also only contains
the “training genomes” in its database and have test-strain frag-
ments as the query sequences.

1) Species: Nine species-classes have five or more example
strains, and therefore we determine fivefold cross validation to
be sufficient for this small dataset. The 9 species-classes, con-
taining 77 strains (approximately 8–9 strains per species), are
selected. For each fivefold cross validation set, about 62 strains
are trained on while about 15 strains are left out (approximately
1/5 of each class, or 1–2 strains per species are left out for each
trial).

The results in Table III show that compared to the language
models, NBC using 15 mers has the highest accuracy, with
97.3% and is slightly better than BLAST’s 96.1%. The back-off
model in this case receive considerably reduced performance.
For both 9 mers and 15 mers, performance decreases by using
a back-off model.

TABLE IV
PHYLA FIVEFOLD CROSS VALIDATION USING THE FULL GENOME TRAINING

DATA. THE BEST PERFORMANCE IS BLAST BUT ONLY 2% BETTER THAN NBC

Previously, species fivefold cross validation was also com-
pared for 25 bp sequences, and performed with 90.2%
1.2% accuracy while BLAST performed at 89.2% 1.9%
[9]. This demonstrates that as long as species-classes are
well-represented, that new species can be predicted with high
accuracy. Also, NBC classifies better when the resolution of
the taxonomy is fine (e.g. species). In fact, for strain resolution,
BLAST is only able to resolve 67% of the strains uniquely
while NBC achieves 75% [9]. It is hypothesized that NBC is
able to learn the tight clusterings of lower level classes better
than the large umbrella (large variance) of higher level taxa.

2) Genera: In order to get a reasonable sample of strains
for genus-level fivefold cross validation analysis, we selected
strains that have at least 10 strains per genera. There are 15 such
genera that meet this criterion and on average, 2–3 strains can be
left out of the training per run, to give a fair fivefold cross valida-
tion. The 15 genera contain 216 strains (almost 1/3 of the orig-
inal dataset). For each cross validation set, around 173 strains
(11–12 strains per genus) are trained on and around 43 strains
(2–3 strains) are left out for each trial.

The results in Table III show that out of the composition
methods, NBC using 15 mers perform the best, and the back-off
models only degrade performance. BLAST outperforms NBC
by about 5%.

3) Phyla: For the phyla dataset, 100 strains were chosen that
represent 4 phyla (2 well-represented and 2 underrepresented):
proteobacteria, firmicutes, cyanobacteria, and tenericutes. The
proteobacteria phyla contains 42 strains, 39 species, 20 genera,
and 17 orders. The firmicutes phyla contains 36 strains, 29
species, 20 genera, and 16 orders. The cyanobacteria phyla
contains 14 strains, 9 species, 4 genera, and 4 orders. The
smallest phyla contians 8 strains, 4 species, 1 genus, and 1
order. Approximately 1/5 of each phyla was left out for each
trial.

The results in Table IV show that 9 mers actually perform
better for phyla recognition than 15 mers. In fact, NBC ob-
tains similar performance to BLAST for this scenario. Interest-
ingly, the back-off model for the 15 mers does almost as well as
NBC in this case. It is surprising to note that although the phyla
are sufficiently represented, the maximum performance is 84%
recognition, and this demonstrates that not even BLAST results
should be held as a ground-truth. Also, as the fragments are clas-
sified higher in taxonomy, the accuracy drops, and this is con-
trary to intuition that it would be easier to classify fragments at
least in to the highest taxonomic level. Finally, it is of note that
as in the case of partial training data, lower order -mers (in
this case 9 mers rather than 15 mers), perform better and thus
show that particular -mer order may need to be optimized for
taxonomic level.
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VI. CONCLUSIONS

In this paper, we demonstrate that composition-based
classifiers, such as the NBC and back-off n-gram language
models, are promising for the taxonomic binning problem of
metagenomics. NBC obtains better results for lower taxonomic
levels, and back-off modeling can improve performance for
partial training data which arises in the case of incomplete
or partially sequenced genomes. To simulate the situation
where new genomes may need to be classified, cross validation
tests demonstrate that reasonable accuracy for new genomic
fragments can be obtained, as long as the respective taxonomic
classes are well-represented. Interestingly, different Nmer sizes
may do better for different levels (as seen with Phyla), and this
parameter may need to be optimized. While we only focus on
500 bp in this paper for consistent comparison, we have previ-
ously evaluated classifier performance across several fragment
sizes, and find that performance does not significantly decrease
for 100 bp and 25 bp fragments. Therefore, statistical models
can obtain reasonable results for shorter reads for full genomes
and have an advantage over BLAST for partial knowledge in
the case of incomplete genomes.
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