
Hindawi Publishing Corporation
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 495849, 11 pages
doi:10.1155/2011/495849

Research Article

Discovering the Unknown: Improving Detection of Novel
Species and Genera from Short Reads

Gail L. Rosen,1 Robi Polikar,2 Diamantino A. Caseiro,3

Steven D. Essinger,1 and Bahrad A. Sokhansanj4

1 Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
2 Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028, USA
3 Spoken Language Systems Laboratory, Instituto Superior Técnico, 1049-001 Lisbon, Portugal
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High-throughput sequencing technologies enable metagenome profiling, simultaneous sequencing of multiple microbial species
present within an environmental sample. Since metagenomic data includes sequence fragments (“reads”) from organisms that are
absent from any database, new algorithms must be developed for the identification and annotation of novel sequence fragments.
Homology-based techniques have been modified to detect novel species and genera, but, composition-based methods, have not
been adapted. We develop a detection technique that can discriminate between “known” and “unknown” taxa, which can be used
with composition-based methods, as well as a hybrid method. Unlike previous studies, we rigorously evaluate all algorithms for
their ability to detect novel taxa. First, we show that the integration of a detector with a composition-based method performs
significantly better than homology-based methods for the detection of novel species and genera, with best performance at finer
taxonomic resolutions. Most importantly, we evaluate all the algorithms by introducing an “unknown” class and show that
the modified version of PhymmBL has similar or better overall classification performance than the other modified algorithms,
especially for the species-level and ultrashort reads. Finally, we evaluate the performance of several algorithms on a real acid mine
drainage dataset.

1. Introduction

Mass amounts of high-throughput sequenced DNA are
being produced as a result of metagenomics projects, and
new tools are needed to identify the taxonomic content
of these environmental samples. Currently, biologists have
two main goals: (1) classify as many organisms as possible,
and (2) assess the genes and functions within the sample
[1]. This is especially difficult when the sample contains
many uncultivated organisms that have no known reference
genome. In addition, the reads obtained from these samples
can have short lengths from next-generation technologies,
complicating the identification process. Such technologies
are pivotal in order to sequence as much DNA as possible
within such a sample in a timely fashion but have a “size”
(associated with accuracy) tradeoff.

Currently, taxonomic identification is plagued by sev-
eral obstacles. Typically, researchers classify metagenomic
reads, or sequenced DNA reads, by scoring their alignment
to previously sequenced organisms using BLAST [2–4].
Unfortunately, only a thousand out of millions of possible
species have their genomes fully sequenced. This under-
representation has severely restricted the development of
an automated system that recognizes sequences from taxa
without completely sequenced genomes [5, 6]. In fact,
several researchers believe that sequencing error skews our
estimates of the abundance of taxa since errors can cause
artificial “divergence” in reads, enough to falsely predict new
operational taxonomic units (OTUs) [5, 7]. Recent papers
call for ways to infer which species are truly known or
unknown from metagenomics samples due to this unwanted
variation [5, 7]. Huson et al. show that anywhere between



2 Journal of Biomedicine and Biotechnology

635 “known” genomes

102
genomes

(“unknown”
/“novel”)

275
genomes

(“unknown”/
“novel”)

Classifier training

Detector training
Test genomes

53% known
genera/species

79% known
genera/26%
unknown

species

21% unknown
genera/

unknown
species

34% known
genera/species

63% known
genera/29%
unknown

species

37% unknown
genera/

unknown
species

Figure 1: The datasets used in this paper are composed of a classifier training set/database, novel genomes used to train the detector, and
a separate novel-genome test set. The blue areas represent the percentage of genomes that have “known” genera/species; the green areas
represent the percentage of genomes that are “known” at the genus level but “unknown” on the species level; the red areas represent the
percentage of genomes that are “unknown” at both the species and genus levels.

10% and 90% of all reads may fail to produce any hits
to known genomes when analyzed with BLAST, and they
develop a last common ancestor (LCA) algorithm to assign
reads to the most confident taxon (class) [3]. In [8], Brady
and Salzberg also state that they “investigate” confidence
scores for predicting the correctness of the classifier, but
they are unable to solve this problem. Therefore, a detec-
tor is clearly needed for composition-based methods to
accept/reject reads based on their known/unknown status.
In this paper, we address this detection problem and show
that we can use the likelihood scores as confidence scores and
can interpolate the scores between different read lengths to
obtain a consistent detector of “known” reads.

In this paper, we develop a detector for “unknown” novel
genome reads for use with composition-based methods that
can accept/reject reads from novel taxa anywhere in the
taxonomic hierarchy. For example, a species-level confidence
detector may reject a read but the genus-level detector may
accept it. This would indicate that this is a new species within
a known genus. To detect these novel genomes, we show that
composition-based methods perform better than homology-
based methods on the finer resolution of taxonomic levels.
The nave Bayes classifier (NBC) and PhymmBL offer fast
and attractive solutions, because they are based on the DNA’s
compositional word-frequency occurrence and are able to
give a log-likelihood score or similar that can be used to
develop such a detector [8, 9]. NBC and Phymm’s ease of
use, speed of training and testing, combined with its log-
likelihood output (or in the case of PhymmBL, hybrid scores)
make them attractive, simple, yet elegant designs for large-
scale metagenomic classification and comparison.

2. Materials and Methods

2.1. Dataset for Detector Design. In order to design a detector,
we partition the available data into three datasets as shown
in Figure 1. The first is the “known” dataset, composed of
635 known completed microbial genomes in Genbank [10]
that were available as of February 2008. This known dataset
is used to train the supervised classifier. Then, we use a
second dataset consisting of 102 “novel” genomes, those
strains added to Genbank from February 2008 to August
2008. This second dataset is used to train the detector to
determine whether a read belongs to a known or unknown
species/genus. Finally, we have a third “test unknowns”
dataset composed of 275 genomes, added to Genbank from
August 2008 to November 2009. This dataset is then used to
evaluate the detector/classifier combination. We specifically
define the term “unknown” as a read’s taxonomic class
does not exist in the training database for the particular
taxonomic level/rank being classified. For example, some
reads may originate from “unknown” species/genera but still
be known at the phyla level. We illustrate the “known,”
“unknown”/“novel” concept for each dataset in Figure 1,
and describe their composition in detail in the next section.
Ultimately, we show that such a detector, in conjunction with
composition-based likelihood scores, is able to determine if
a read originates from unknown species/genera.

In order to accomplish this goal, we start by evaluating
the accuracy of NBC, BLAST, and PhymmBL on 102 novel
genomes for the species and genus levels (after being
trained on the 635 genome training dataset). Based on this
evaluation, we then design a detector: first by using BLAST
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scores followed by using the NBC likelihood scores. We also
design a detector for PhymmBL using the combination of its
Phymm-likelihood and BLAST scores. Finally, we compare
the performance of the classifier+detectors for the NBC
and PhymmBL approaches on the test dataset of 275 novel
genomes to the BLAST-based methods: MEGAN, SOrt-
ITEMS [11], and CARMA [12]. Because homology-based
methods have never been benchmarked for known/novel
detection, we will benchmark these for the first time
while also developing and benchmarking composition-based
detectors. Finally, we demonstrate NBC’s, PhymmBL’s, and
SOrt-ITEM’s performance on an experimentally acquired
acid mine drainage dataset.

The 635 microbes of the “known” dataset, from [13],
belong to 470 distinct species and 260 distinct genera. 404
strains are the sole member of their species-class while 171
strains are the sole member of their genus in the dataset.
This shows that some knowledge will be lacking when it
comes to species- and genus-class diversity. While 66 species
contain more than one strain, 89 genera contain more than
one strain. The microbial strains genome lengths range
from 160 K(bp) for Candidatus Carsonella to 13 Mil(bp) for
Sorangium cellulosum.

In order to design the detector, another 102 strains
were acquired from Genbank and labeled “novel” and not
represented in the “known” training database. 54 of these
102 novel strains belong to 36 known species while the
remaining 48 comprise 46 “novel” species (with respect to
the “known” database). At the next taxonomic level, 81 of the
strains belong to 55 “known” genera while the remaining 21
comprise 21 “novel” genera. This is a good known/unknown
representation for different levels of the detector because
all strains are novel (with respect to the training dataset),
approximately 1/2 of the strains’ species classification is
unknown, and approximately 1/5 of the strains’ genera
classification is unknown.

2.2. Test Dataset. 275 strains were acquired in November
2009 from NCBI, which were all new, completely sequenced
microbial genomes, since August 2008. The 275 genomes
comprise 156 unique genera, of which 64 are in the “known”
database and 92 are not, and 216 unique species, of which
48 are “known” and 168 are not. 172 (63%) of the genomes
belong to the 64 known genera, and 96 (34%) of the them
belong to the 48 known species. The “unknown” strains
belong to a diverse set of genera and species; the 275− 172 =
103 (37%) “unknown” strains belong to 92 novel genera,
and 175 − 96 = 179 (66%) of the strains belong to 168
novel species. 5 strains from the test set’s genera overlap with
the “unknown genera” in 102 genomes used to train the
detector. This means that the detector trained on “unknown”
genera that is also represented in 2% of the test set. There
is a concern that this overlap may have artificially raised
accuracy, but the overlap affects only 2% of the sequences,
so we conclude that the artificial increase in performance, if
any, is negligible. Also, all classifiers have the same training
advantage, so it is still a fair comparison. Finally, we note that
there is no overlap at the species level. Therefore, we do not
“overtrain” our detector on many examples of “unknowns”

that also occur in the test set. It is possible that when
designing a detector with a different dataset, some of the
unknowns may exist in the “novel” training data, so this is
a realistic dataset. Also, there is a good distribution of novel
to known strains based on which we would expect 37% of
the genomes to be rejected (i.e., declared by the detector to
be unknown) at the genus level while 66% to be rejected at
the species level.

2.3. Detector Development. To develop a detector, we com-
pose a ROC (receiver operating characteristic) curve using
the likelihood scores of the composition-based methods on
the training dataset. Each score is associated with the binary
decision of whether the genome exists in the database or
not. The best operating point on the training dataset is
determined as the threshold that obtains the best combined
sensitivity and specificity, defined by the the maximum
point of the summed sensitivity and specificity metrics. The
development of the detector is summarized as follows.

(1) Acquire 635 known genomes.

(2) Train NBC/PhymmBL on the 635 genomes.

(3) Acquire 102 unknown genomes.

(4) Draw 100 L-length reads from each of the 737 full
genomes (coding and noncoding), where L = 500,
100, 25 bp.

(5) Score the L-length reads (using NBC, PhymmBL),
where the scores can be interpreted as posterior prob-
abilities of the genomes predicted by the classifiers.

(6) Construct an ROC curve using the algorithm’s scores
and known/unknown labels.

(7) Determine best operating point by maximizing the
sensitivity+specificity.

(8) Select score threshold corresponding to best operat-
ing point for the training data (to be subsequently
used on test data).

2.4. Measures for Comparison. We define the following
measures which will be used to compare the methods.

(i) Detector sensitivity = TP/(TP + FN), where TP is
the number of true positives (reads from “known”
taxa correctly identified) and FN is the number of
false negatives (reads from “known” taxa incorrectly
identified as unknown).

(ii) Detector specificity = TN/(TN + FP), where TN is the
number of true negatives (“unknown” reads correctly
identified as unknown), and FP is the number of
false positives (unknown reads labeled as “known”)
number.

(iii) Detector accuracy= total correct decision/total num-
ber of reads = (TP + TN)/(TP + FN + FP + TN).

(iv) Classifier accuracy = total correctly classified/total
number of reads, where correctly classified means
classified correctly into its taxonomic rank.
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(v) Overall classification accuracy = (total detected as
known that are also correctly classified)+TN/
total number of reads, where the first term can be
approximated by (TP + FP)∗ (classifier accuracy).

2.5. Methods for Comparison. The methods, in addition to
NBC, can be accessed via the web. NBC [9] is available for
download and online at http://nbc.ece.drexel.edu/. Phymm-
BL [8] is available for download from http://www.cbcb
.umd.edu/software/phymm/. SOrt-ITEMS [11] is available
for download from http://metagenomics.atc.tcs.com/binn-
ing/SOrt-ITEMS/. MEGAN [3] is available for download
from http://www-ab.informatik.uni-tuebingen.de/software/
megan. WebCarma [12] is available online at http://web-
carma.cebitec.uni-bielefeld.de/cgi-bin/webcarma.cgi.

3. Results

To compare several methods for the task of detecting novel
genomes, we simulate several scenarios. In the first section,
we develop a detector (BLAST, NBC, and PhymmBL)
that accepts/rejects reads of unknown species and genera
based on each method’s score; species/genus levels are
informative levels where we would expect to see larger
differences between the various methods. Also, we narrow
our performance comparisons to these levels since many taxa
do not have all levels defined (e.g., some taxa have species-,
genus-, family- and phyla-level labels but are missing family-,
and class-level labels in the Genbank taxonomy database).

We only develop the detector for PhymmBL and NBC,
since there are other BLAST-based detectors, such as
MEGAN, CARMA, and SOrt-ITEMS that perform such
a detection task. As a measure of comparison between
ROC curves in all sections, we assess the area-under-
the-curve (AUC) metric, a standard measure for detector
performance. We then compare the performance of the
NBC and PhymmBL detectors on a test set and show that
they can improve the detector accuracy of the raw method
and outperform BLAST-based methods. We also show the
overall classification performance (binning each read into
their associated bins) in addition to the unknown class.

3.1. Detector Development for BLAST, NBC, and PhymmBL
(for the 635 Training Genomes Plus 102-Test Genomes). The
poor classifier accuracies on novel genomes leads us to ask
how well can classifiers predict “unknown” taxa. In other
words, can BLAST’s bit score or NBC’s/PhymmBL’s score
be used to indicate whether a fragment is truly from a new
species, genus, and so forth?

3.1.1. BLAST Bitscore for Detection of 635 Known Plus 102
Unknown Genomes. Here, we show the utility of BLAST’s
bitscore when accepting/rejecting known/unknown reads. In
creating the receiver operating characteristic (ROC) curve
for BLAST’s bitscore, reads are marked as correct if they are
correctly classified. In Figure 2, we show BLAST’s ability to
accept/reject reads from known/unknown strains for strain,
species, and genus levels. We see that each of the optimal
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Figure 2: The ability of BLAST to discern the correct strain
genome (in red-dashed), species genome (in green-dash) and the
correct genus label (in blue) for the known 63, 500 (100 randomly
selected reads from each of 635 known genomes) plus unknown
10, 200 (100 randomly selected reads from 102 novel genomes)
25 bp reads. The ROC curves compare BLAST’s bit scores against a
varying threshold. The plot demonstrates that BLAST predicts most
“known” genomes correctly at the optimal operating point, but
incorrectly detects “unknown” genomes. For the strain detection,
the area-under-the-curve is 60.1% with the best threshold yielding
a sensitivity of 99.8% and specificity of 20.4%. For the species-level
detection, the AUC is 65% with 99.1% sensitivity and a specificity of
34.7%. For the genus detection, the area-under-the-curve is 78.9%
with the best threshold yielding a sensitivity of 98.6% and specificity
of 59.3%. The red line represents the 50% chance line.

operating points is near 100% sensitivity for the three
taxonomic levels while the specificities are around 20%, 35%,
and 60% for strains, species, and genera, respectively.

BLAST’s ability to predict taxonomically known and
unknown reads using the bit score/e-value has mixed
results. While BLAST is clearly a good classifier for known
organisms within its database, it lacks the ability to reject
(declare “unknown”) novel genomes with both high sen-
sitivity and specificity. We now investigate the feasibility
of PhymmBL/NBC’s score to develop a better detector for
known and unknown taxa from using very short-read reads.

3.2. NBC Scores for Detection of 635 Known Plus 102 Novel
Genomes. To develop a detector using the NBC likelihood
scores, we vary a threshold and mark reads correct if they
are in the database (a looser constraint than being correctly
classified). The NBC detector’s ROC curves are shown in
Figure 3. The AUC for the 500 bp reads are marginally better
than the 25 bp reads, and, interestingly, the genus and species
levels perform the same.

3.3. PhymmBL Scores or Detection of 635 Known Plus 102
Unknown Genomes. The ROC curves are also constructed
for PhymmBL for species- and genus-level performance and
500 bp and 25 bp reads. As seen in Figure 4, the ROC shapes
are similar to those of BLAST’s, but with better specificity.
The 25 bp species-level specificity for PhymmBL is 46%
compared to BLAST’s 35%, and the genus-level specificity
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Figure 3: Comparison of ROC curves using the likelihood-based
NBC scores. The AUC metric shows that the detector performs best
on 500 bp reads (and not that much lower for 25 bp) for both the
species and genus levels for the 100 reads each from the 635 known
and 102 unknown training genomes.
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Figure 4: The PhymmBL ROCs follow a similar shape to the BLAST
ROCs but have significantly better optimal operating points. Yet, the
overall AUC of each of the curves falls below that of NBC curves.

is 65% compared to BLAST’s 60%. The sensitivity that is
sacrificed is only a 1-2% decrease from BLAST’s 99%. While
the 500 bp and 25 bp genus-level operating points are the
same, the 500 bp read’s AUC is better than the 25 bp read’s
AUC. For the species level, the 500 bp operating point and
AUC are better than the 25 bp operating point.

3.4. Implementation of the Detector: Extrapolating the
Operating-Point Thresholds to All Fragment Sizes. One of the
obstacles to using the best derived ROC operating point is
that the threshold changes according to the fragment length.
This is an important aspect to address since in any given

dataset from next-generation sequencing technology, the
read lengths are variable (usually with an average length). To
overcome this obstacle and adjust the threshold for each read
length, we interpolate between different operating thresholds
for the three read lengths. This gives a heuristic equation
that can then be used for any read length. Previously, the
best operating threshold point was chosen for the 500 bp,
100 bp, and 25 bp reads for each of the strains, species, and
genus classifications. The best operating point is determined
as the point that obtained the combined best sensitivity
and specificity, which sum closest to 200% (100% for
specificity/sensitivity, resp.).

For NBC thresholds, we use a linear interpolation. For
example, using this method on the species level, the NBC
log-likelihood best operating thresholds were determined to
be −8079, −1445, and −185 for 500 bp, 100 bp, and 25 bp,
respectively. A linear interpolation between these points
yields a good fit (where the R2 fit value [14] is 1 − 3e−6 or 1
when rounded). On average for the strain, species, and genus
classification, the linear log-likelihood fit is y = −16.6x+210,
where x is the length of the read and y is the likelihood
detector threshold.

For PhymmBL, we found that the best thresholds for
species level were −270.6, −27.4, and −18.5 for 500 bp,
100 bp, and 25 bp reads. Even though the PhymmBL scores
are not truly likelihood scores (since they combines Phymm’s
likelihood score and BLAST’s e-value), the thresholds follow
a trend, and we can develop a heuristic interpolation for
them. A parabolic curve approximated the interpolation
better in this case. For example, the species-level fit is
modeled by y = −0.001x2 − 0.0074x − 17.75 (where the R2

fit is again nearly 1).

3.5. Testing the Detector on 275 Novel Genomes. The detec-
tors, developed using the 635 known genomes and the
102 unknown genomes, are used to accept or reject 100
reads from each of the 275 new genomes as “known”
or “unknown”, respectively. The new 275 genomes are all
“unknown” on the strain level but some have “known”
status on higher levels (as described in the Materials and
Methods section). In addition to evaluating the detectors,
we also assess the ability of MEGAN and SOrt-ITEMS to
accept/reject taxa via their capability to classify a read at the
species/genus level. The sensitivity, specificity, and detector
accuracy are calculated for all methods and can be seen in
Table 1. The detectors’ ability to accept/reject reads from
novel species was better than accepting/rejecting reads from
novel genera, unlike homology-based LCA algorithms that
perform better at higher-level taxa. This can be due to the
fact that there are more unknown species in the set, and,
therefore, if the detector’s specificity is high, it will do better
on classes with more “unknowns”.

To compare the implementations of NBC+detector and
PhymmBL+detector against current methods, we down-
loaded MEGAN version 3.7.2. Also, we downloaded the
SOrt-ITEMS that was last updated January 7th, 2010 and
used TBLASTX since it requires a protein-BLAST search. We
also benchmarked against WebCarma 1.0, run on March 8,
2010. For WebCARMA, we infered whether a taxon was in
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Table 1: Sensitivity, specificity, and (detector) accuracy rates of detectors for accepting/rejecting reads as “known” from a 275-strain test-set.
Using 5-fold cross-validation, the maximum standard deviation is 1%. If all fragments were rejected, the species level would obtain 66%
accuracy and the genus level 37% accuracy, and PhymmBL+Detector achieves 15–30% above this threshold. SOrt-ITEMS did not classify
any fragment below the genus level, so N/A is designated for the species level. WebCarma’s performance using 500 bp fragments resulted in a
20.1% sensitivity, 86.9% specificity, and 54% detector accuracy for the species level, and 23% sensitivity, 85% specificity, and 40.3% detector
accuracy for the genus level. WebCarma only classified about 10 K of the 27.5 K reads. Due to its poor performance, we did not include it in
the table.

NBC detector

Species Genus

Fragment length Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

500 bp 53.7% 96.3% 81.9% 32.9% 99.9% 58.0%

100 bp 62.2% 95.5% 84.3% 39.3% 99.5% 61.8%

25 bp 77.4% 89.6% 85.5% 61.7% 76.6% 67.3%

PhymmBL detector

Species Genus

Fragment length Sensivitiy Specificity Accuracy Sensitivity Specificity Accuracy

500 bp 84.0% 88.3% 86.8% 58.5% 97.4% 73.0%

100 bp 79.9% 92.0% 87.9% 52.5% 98.3% 69.6%

25 bp 77.2% 86.8% 83.5% 51.2% 92.6% 66.7%

MEGAN as a detector

Species Genus

Fragment length Sensivitiy Specificity Accuracy Sensitivity Specificity Accuracy

500 bp 83.3% 60.0% 68.1% 76.6% 66.5% 72.8%

100 bp 79.5% 71.4% 74.2% 66.9% 76.8% 70.6%

25 bp 71.0% 74.5% 73.2% 55.3% 73.4% 62.1%

SOrt-ITEMS as a detector

Species Genus

Fragment length Sensivitiy Specificity Accuracy Sensitivity Specificity Accuracy

500 bp N/A N/A N/A 57.1% 96.5% 71.2%

100 bp N/A N/A N/A 44.8% 97.9% 64.5%

25 bp N/A N/A N/A 6.1% 98.7% 40.5%

the database or not by checking if that taxon showed up
in the results file. If it did not, we declared it as unknown.
WebCARMA only annotated approximately 10,000 of the
27,500 reads resulting in poor genera/species detection and
detection accuracy.

3.5.1. Comparison of Detector Performances. The results in
Table 1, which summarize the sensitivity, specificity, and
detection-accuracy of NBC and PhymmBL detectors, indi-
cate that the performance of the PhymmBL detector is better
than the NBC detector for 500 bp and 100 bp reads whereas
NBC detector is better for the 25 bp reads. We conjecture
that NBC is overfitting the operating-point thresholds due
to the linear-interpolation heuristic, which interpolates the
operating threshold between different-sized read lengths,
and a more intelligent interpolation may be needed.

On the test data, PhymmBL’s sensitivities were better
than NBC’s, but the specificity rates were not as good as
NBC’s. Nonetheless, PhymmBL+detector worked better for
most of the reads and species/genus levels. It can achieve
around 80% sensitivity and 90% specificity for the species
level and 50+% sensitivity and 90+% specificity for the genus

level. We hypothesize that NBC, because of its dependence
on fixed Nmer size overfits the data compared to PhymmBL,
and therefore the thresholds derived on the training dataset
do not extend to the test set as well.

MEGAN and SOrt-ITEMS can also be used as detectors.
MEGAN uses an LCA algorithm to determine if a read should
be assigned to a particular taxonomic level, and SOrt-ITEMS
uses additional alignment information. We used the default
parameters for the MEGAN and SOrt-ITEMS. In order to do
a fair comparison, we used the same BLAST reports that were
generated for the 500 bp PhymmBL analysis for MEGAN,
and we obtained a TBLASTX report for SOrt-ITEMS. For
the 27,500 reads, 4 reads did not get scored by BLAST
and, therefore, were not even assessed by the methods. If
the method assigned a read at the genus/species level, we
determined that this read “passed” its built in detector,
regardless of the accuracy of the assignment. In other words,
if a read is assigned to the family level, it is considered
“unknown” at the species/genus levels. If a read is assigned
to the species level (and, therefore, consequently has most
upper-level assignments as well) but is the wrong species
and genus, we declare that MEGAN/SOrt-ITEMS detector
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Table 2: Comparison of overall classification accuracies (the number of reads that are identified as “known” that are classified into their
correct class plus the no. of unknowns that are correctly rejected divided by all reads) on the 275-strain test set. Using 5-fold cross-validation,
the maximum standard deviation is 1%. NBC, BLAST, and PhymmBL, in their native form, cannot detect “unknown” classes while the
methods combined with a detector can. Performance is also compared to MEGAN and SOrt-ITEMS accuracy. N/A is designated for the
species-level for SOrt-ITEMS since it did not classify anything below the genus level. SOrt-ITEMS obtains the best performance for 500 bp
reads for the genus level but is under the 1% standard deviation threshold to be statistically significant. WebCarma was not included because
its overall performance for 500 bp reads was 50% for the species level and 37% for the genus level. Note that the overall classification
performance increases dramatically when a detector is added to NBC and PhymmBL.

Species

Fragment length NBC BLAST PhymmBL MEGAN SOrt-ITEMS NBC + detector PhymmBL + detector

500 bp 27.5% 28.1% 28.0% 63.2% N/A 78.0% 78.6%

100 bp 25.3% 26.1% 26.9% 69.4% N/A 78.3% 81.1%

25 bp 20.9% 22.8% 23.5% 68.1% N/A 74.7% 73.6%

Genus

Fragment length NBC BLAST PhymmBL MEGAN SOrt-ITEMS NBC + detector PhymmBL + detector

500 bp 43.4% 49.2% 51.4% 68.8% 71.0% 53.6% 70.8%

100 bp 37.6% 42.8% 44.4% 66.5% 64.0% 54.9% 67.4%

25 bp 30.0% 32.7% 33.5% 54.8% 40.1% 45.3% 60.3%

labels it as “known” (passed it) at the species-level and genus-
level but misclassified it. If method did not assign a read or
assigned it above the species/genus levels (e.g., as its family-
label), we mark it as “rejected” for the species/genus level
detection. We observe from Table 1 that MEGAN has worse
specificity for both species and genus levels, than either NBC,
or PhymmBL-based detectors. For the genus level, MEGAN
has the best sensitivity out of all the methods, although its
specificity remains low.

In order to be able to take the classifier accuracy into
consideration in addition to the detector, we define an “over-
all” classification accuracy measure as (number of reads
correctly classified) + (number of reads correctly rejected)/
(total number of reads). The (number of reads correctly
classified) can be calculated as (# of reads that pass the
detector that are correctly classified).

For the species level, MEGAN’s detection accuracy,
shown in Table 2 is worse than the other detection methods.
Consequently, its accuracy as a detector is about the same
or lower than PhymmBL’s detector. SOrt-ITEMS does not
classify below the genus level. As a detector, it has low
sensitivity and high specificity, but the sensitivity drastically
decreases as the reads get shorter. On the other hand, SOrt-
ITEMS has a high positive predictive value for the reads it
does pass, and, therefore, it has a high detection accuracy for
500 bp on the genus level, which decreases for shorter reads.

Note that only 102 “unknown” genomes were used in the
development of the detector as opposed to the 635 known
genomes. For NBC+detector and PhymmBL+detector, we
hypothesize that their performance lowers for genus-level
classification compared to the species level because fewer
“unknown” genus-level examples were available in the design
of the detector. We conjecture that as the database grows and
more “unknown” examples are available, a detector will be
more accurate.

3.5.2. Comparison of Classifier Accuracy Rates with and
without the Detectors. Finally, in Table 2, we show how the
methods’ classification accuracy (without an unknown class)
can be improved with the detector. In this experiment, the
classifier method first scores the reads; then, the reads are
accepted or rejected using the detector. The classification
accuracy of the reads that pass the detector is then com-
puted. NBC, BLAST, and PhymmBL all perform 20–35%
accuracy for the species and genus level, when used in
their native form without a detector (we do not benchmark
BLAST+detector, since PhymmBL uses BLAST and performs
better than BLAST). However, when the detector is added,
the classifiers’ overall accuracy, defined as the number of
reads correctly rejected plus the number of reads identified
as “known” that were correctly classified divided by the total
number of reads, significantly improves for both species level
and genus-level classification.

To calculate MEGAN and SOrt-ITEMS overall classi-
fication accuracy, we scored both algorithms’ output as a
true positive if it correctly identified the correct genus or
species, and we score the output as a true negative if the
method only assigned unknown reads to higher than the
genus level (in other words, it could not resolve the correct
species/genus). For the species level, MEGAN performed
worse than classifiers with detectors, as seen in Table 2. For
the genus level, both methods are better than NBC+detector
but is still worse than PhymmBL+detector. We conclude that
the purely BLAST-based or composition based algorithms
are not as good as the hybrid PhymmBL + detector for
determining novel species/genera.

3.6. Coding versus Noncoding Detector Accuracy for the
Composition and Hybrid Methods. A question arises; how
does the structure of the genomes relate to the novel/known
detection. Since noncoding regions are much more variable
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Table 3: PhymmBL and NBC detector accuracy rates versus
coding/noncoding reads (coding includes full and partial coding
regions).

PhymmBL NBC

Method All Coding Noncoding All Coding Noncoding

Species 87.5% 87.8% 79.4% 82.8% 82.7% 83.2%

Genus 72.6% 73.7% 68.2% 57.1% 56.9% 62.4%

than coding regions, are they more susceptible to errors in
the detector methods?

We analyzed the 275-genome test set for the composi-
tion-based approaches to get an idea of how these dif-
ferent regions perform. We first ran the 27,500 500 bp
reads through MetaGeneMark [15] to annotate the coding
regions. We have shown that MetaGeneMark has almost
90% accuracy for predicting coding regions [16] for 500 bp
fragments. MetaGeneMark did not annotate 766 of the reads,
resulting in 2.8% of the 500 bp reads as noncoding. Since this
is a significant stretch of noncoding DNA, we expect to have
a small proportion.

We then examined the accuracy rates of the detector
on the coding/noncoding regions in Table 3. We can see
that PhymmBL has higher accuracy for coding regions than
noncoding regions, and NBC is opposite. We hypothesize
that since PhymmBL partially uses BLAST, that it is more
likely to predict homologous gene regions correctly than
noncoding regions. In fact, 32% of noncoding regions failed
in the genus-level detection in PhymmBL. NBC, on the other
hand, which is fully composition based, is more likely to
recognize the unique signatures of the noncoding regions—
and its noncoding genus-level detection accuracy is almost as
high as PhymmBL’s, but its discrimination between known
and novel gene regions is not sufficient. This provides insight
that the two methods may be complimentary.

4. Demonstration of Detector on
a Difficult (Real) Dataset

While it is important to benchmark methods rigorously on
a test set, we can only get a true insight into their usage by
examining a real dataset. We, therefore, analyze the Soudan
acid mine red drainage dataset, which is a sample taken
near a borehole of the mine [17]. This is a challenging
metagenomics sample because there are 317 K reads, where
the average read length in this sample is 100 bp, which some
researchers claim are very short reads [18]. In the red Soudan
Mine set, the number of organisms found without the detec-
tor was 628/631, using NBC/PhymmBL, respectively, out of
the 635. This is most likely false, since acid mine drainage
is known to be of low complexity [19]. We also found the
median number of reads per organism is 214/340 while the
mean is 506/503 with standard deviation of +/− 954/545. So,
while there is high variance for high-abundance organisms,
there is an “even spread” of hits across the genome training
set, highlighting a higher than expected diversity. While the
Soudan sludge’s diversity may be higher than that studied by

Tyson et al. [19], it is doubtful that it is this high, and this
issue highlights the difficulty of analysis on soil and water
samples complicated by short reads. Therefore, the results
in this section should be examined in a critical light, as all
of these classifiers performed better for longer reads. The
idea is to highlight the advantage of using methods that will
“filter out” unknown taxa accurately, so that we can gain an
accurate assessment of “known” taxa at particular levels.

The raw NBC scores found the four most abundant
genomes to be (1) Flavobacterium johnsoniae with 12,816
reads, (2) Trichodesmium erythraeum IMS101 with 9641
reads, (3) Sorangium cellulosum (So ce56) with 8747 reads,
and (4) Clostridium beijerinckii with 7300 reads, Johnsoniae
et al. are not usually found in marine environments while
Trichodesmium erythraeum IMS101 is. While these organisms
could come from the soil part of the sludge, it is unlikely that
they would survive in such a salty environment.

For PhymmBL (shown in Table 4), the most abundant
four genomes are (1) Gramella forsetii with 4102 reads, (2)
Marinobacter aquaeolei with 3885 reads, (3) Flavobacterium
johnsoniae with 3480 reads, and (4) Dinoroseobacter shibae
with 3402 reads. PhymmBL has identified marine microbes
in 1, 2, and 4 that are indeed more likely to be present in the
marine sludge.

Next, the species/genus detectors are evaluated on the
dataset. For NBC, only 141 reads out of 317 K passed the
species-level detector, and 179 reads passed the genus-level
detector. For PhymmBL, 794 reads out of the 317 K reads
passed the species-level detector while 1053 reads passed the
genus-level detector. The detectors may seem too selective
because sensitivities of the detectors are suboptimal, as
shown in the Results section. Although as expected, the
sensitivity is much higher for the PhymmBL detector because
it passes more reads. Tables 4 and 5 illustrate the distribution
of reads that passed the NBC and PhymmBL detectors.

For NBC, the top hit is Marinobacter hydrocarbonoclas-
ticus, which can degrade hydrocarbons and is found in
pollution—therefore, likely to be present in the sample [20].
The second hit, Ruegeria is known to metabolize sulfur
and could play an important part in the acid drainage of
the mine, therefore, it is also quite likely to be present in
the sample [21]. Rhodobacter sphaeroides can metabolize
sulfur compounds and is highly likely in the sample [22].
Dinoroseobacter shibae is known for its ability to perform
aerobic anoxygenic photosynthesis, and since the red sample
of the acid mine drainage is near the surface, it is also likely
to be present [23]. In [17], authors found a wide range of
metabolisms in the sample, and NBC passed organisms that
had a diversity of metabolisms. Therefore, we show the power
of the detector to discriminate reads that are most likely to
be in our database, as opposed to not applying the detector,
in which case “unknown” strains are simply misclassified.
PhymmBL finds similar organisms but in a different order
and since it has higher sensitivity, it is able to find more
species/genus reads that pass the detector.

The abundant species that are in the top 10 raw
reads but did not pass the detector are Gramella forsetii,
Flavobacterium johnsoniae, Polaromonas naphthalenivorans,
Aeromonas salmonicida, and Rhizobium leguminosarum.
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Table 4: The table shows the distribution of top 10 most abundant species reads of PhymmBL and the top-8 species-reads passed the species
resolution detectors for the red soudan acid mine drainage dataset, using the 635-genome training database.

(a)

PhymmBL

Organism Matched reads

Gramella forsetii 4102

Marinobacter hydrocarbonoclasticus 3885

Flavobacterium johnsoniae 3480

Dinoroseobacter shibae 3402

Ruegeria pomeroyi 3119

Polaromonas naphthalenivorans 3116

Aeromonas salmonicida 2899

Rhodobacter sphaeroides 2616

Rhizobium leguminosarum 2541

Paracoccus denitrificans 2533

(b)

NBC detector PhymmBL detector

Organism Matched reads Organism Matched reads

Marinobacter hydrocarbonoclasticus 31 Dinoroseobacter shibae 85

Dinoroseobacter shibae 18 Marinobacter hydrocarbonoclasticus 62

Ruegeria sp. TM1040 17 Rhodobacter sphaeroides 24

Rhodobacter sphaeroides 15 Ruegeria pomeroyi 24

Shewanella sp. ANA-3 11 Ruegeria sp. TM1040 22

Shewanella baltica 5 Paracoccus denitrificans 20

Desulfotalea psychrophila 4 Shewanella baltica 17

Paracoccus denitrificans 4 Shewanella sp. ANA-3 14

Table 5: The table shows the distribution of top 8 most abundant genus reads that passed the genus-resolution detectors for the red soudan
acid mine drainage dataset, using the 635-genome training database.

NBC detector PhymmBL detector SOrt-ITEMS

Organism Matched reads Organism Matched reads Organism Matched reads

Marinobacter 40 Dinoroseobacter 101 Marinobacter 476

Dinoroseobacter 24 Marinobacter 73 Gramella 388

Rhodobacter 23 Ruegeria 59 Dinoroseobacter 297

Shewanella 20 Rhodobacter 41 Rhodobacter 264

Ruegeria 19 Shewanella 41 Flavobacterium 161

Paracoccus 9 Pseudomonas 26 Pseudomonas 131

Desulfotalea 4 Bacillus 21 Alkalilimnicola 111

Bartonella 4 Clostridium 21 Roseobacter 101

Gramella forsetii may be truly present as it is reasonable
to find in the sample since it degrades polymeric organic
matter [24], but it is usually found in marine environments,
so it is difficult to conclude. Flavobacterium johnsoniae and
Aeromonas salmonicida are fish-born pathogens and could
actually be present [25, 26], but this again is hard to
conclude. Polaromonas naphthalenivorans is likely since it
grows on hydrocarbons found in contaminated sediment
[27], so that is a misrejection of the classifier. On the other
hand, rejecting Rhizobium leguminosarum is quite reasonable

since it is found in plants. So, these bacteria are still found
after the detector but not as abundant. This can be for several
reasons. One hypothesis is that reads that correspond to these
bacteria may actually be from closely related but unknown
species. Another hypothesis is that these reads are from
horizontally transferred elements which are responsible for
particular metabolisms but actually belong to an unknown
species.

We also compared against SOrt-ITEMS, since this
homology-based method had the best 500 bp classification
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accuracy for the genus level and was comparable to MEGAN
for 100 bp reads. Compared to NBC/Phymm+detector, the
main differences are that it accepts Gramella and Flavobac-
terium as a likely genera, although the other detectors reject
these. It also finds a likely presence of Alkalilimnicola [28],
which is an arsenite oxidizing bacterium and is found
commonly in contaminated waters. This intuitively seems
likely in the acid mine setting and seems to have an advantage
over the other methods. SOrt-ITEMS passes Ruegeria, which
is known to be in marine-only settings but could be present
due to the saline nature.

We can see that the PhymmBL/NBC+detector methods
are more selective in confidently “passing” reads through
the detector than SOrt-ITEMS, and we hypothesize that the
composition-based methods, such as NBC and PhymmBL,
better reject some organisms that are unknown at the genus
level. However, it may also be true that the sensitivity of
these methods may not be as accurate on a real dataset, as
seen with the SOrt-ITEMS discovery of the abundance of
Alkalilimnicola.

All the methods agree that under 1% of the data
originates from previously sequenced genera! This agrees
with the hypothesis that 90+% of species cannot be cultured
and, therefore, have not been previously sequenced [1]. This
is an amazing result and shows us the difficult problems that
metagenomics samples pose. We only examine species/genus
classifications in this paper, but we hypothesize that more
than 1% can be successfully classified into higher taxonomic
levels. We emphasize that this discussion is an exercise
in analyzing an extremely challenging dataset that has a
diversity of organisms and short ∼100 bp reads.

5. Discussion

In this paper, we introduce a novel/known organism detector,
an automated approach to determine whether a given organ-
ism is previously known or novel. The approach can be used
with composition- or hybrid-based taxonomic classifiers. We
also rigorously benchmarked all relevant algorithms to assess
their performances and to distinguish novel from known
reads. Being able to discriminate between next-generation
sequencing reads that originate from known novel organisms
will allow biologists to make new organism discoveries,
have higher confidence in those reads that come from
previously sequenced species, and discern other domain-
level contaminants (such as viral or eukaryotic DNA) in
the sample. Previously developed homology-based methods
can be used for such detection, but, as we have shown,
those methods are suboptimal, especially at the species level.
Overall, the PhymmBL detector is the best and obtains
∼85+% accuracy for accepting/rejecting species reads (in
novel detection) and ∼70+% for genus reads. In PhymmBL,
misclassification of reads that pass the detector causes a
10%/3% drop in overall accuracy for 500 bp reads. For
example, for the species-level, the detector accuracy is 86.8%,
but it is overall classification accuracy (correctly classifying
the known reads plus labeling the unknowns) is 78.6%. This
detection → classification drop is about 4-5% for MEGAN,
but MEGAN has worse detector/classification accuracy to

begin with. An impressive factor in SOrt-ITEMS, is that it
only drops 0.2% when classifying reads that pass the detector,
meaning this method is very confident in correctly classifying
any read that passes its detector. This makes SOrt-ITEMS
overall accuracy one of the best for the genus level at 500 bp.

The next step will be to implement such a detector
for upper levels on the tree of life. The end product will
then be to supply a probabilistic threshold to users, so that
reads that have a likelihood score above this threshold can
be confidently labeled as “known” whereas those whose
score falls under this threshold can be confidently labeled
as “novel”. Such a detector can give a first pass of all the
reads that may belong to the database, and would be useful
in determining new species. On the other hand, we can
also use this system to determine whether a given taxon is
novel at deep branching within the tree of life. Once reads
are identified to come from novel species, they can then be
placed in the phylogenetic tree to determine their position in
the tree of life.

The limitation of this approach is that it is only a “first
pass” at labeling the reads that originate from known/novel
organisms. Further interpretation is then required to deter-
mine novelty. For example, a read that is on the “threshold
of detection” may just be another allele of a gene within the
same species. Those with very low scores are more likely to
be novel, and then they will have to be aligned and placed in
a tree with other sequences to determine lineages. But with
the vast amount of information coming from metagenomics
datasets (with millions of reads), obtaining a “first-pass”
set of sequences that is a fraction of the original number
can significantly reduce computational time of subsequent
phylogenetic analysis.

6. Conclusions

This work develops a detector and demonstrates its appli-
cation to identify known and unknown genomes for
composition-based classification methods, and we demon-
strate that our detector with a hybrid method outperforms
current homology-based methods. Effectively, the detector
introduces an “unknown” class and enables classification
methods to filter out reads that will not be classified correctly,
resulting in improved classification accuracy. In addition to
detecting novel genomes, we also propose that the detector
can be used to filter out noisy reads that have lowconfidence
when scored.

We use the previously implemented naÏve Bayes classifier
and PhymmBL (interpolated Markov model plus BLAST),
which assigns a read to the closest match in the database,
to design a detector that can detect reads from previously
sequenced organisms. We show that NBC and PhymmBL
scores can be used to determine if a read is from a novel
organism in respect to the training database. The overall
classification accuracies of composition-based methods are
greatly improved when detectors are added to filter out
“unknown” organisms. Also, there is only a mild decrease
in performance when classifying ultrashort reads as opposed
to Roche 454 length. We determine that the PhymmBL
+ detector classification performs similarly or better than
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all the methods. Overall, the PhymmBL detector obtains
∼85+% accuracy for accepting/rejecting species reads and
∼70+% for genus reads and only slightly lower in the overall
classification accuracy.
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